skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Reichart, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Gravitymancer processing tool within Skynet’s Astromancer suite opens a unique window for students of introductory astronomy courses to explore the most powerful events observed in our Universe – the merger of binary neutron-star systems and black-hole systems.  These merger events produce short-lived bursts of gravitational radiation, as observed by one or more of the following gravitational-wave observatories:  LIGO, Virgo, and KAGRA.  Students can use Gravitymancer to load and interpret the archival event data, finding useful properties like the total mass and mass ratio of the binary system, distance, and inclination angle. While on the surface, students can interpret gravitational-wave events with an easy-to-use GUI, we present here the complex processing utilized to make this tool work. 
    more » « less
  2. Abstract We report the study of a huge optical intraday flare on 2021 November 12 at 2 a.m. UT in the blazar OJ 287. In the binary black hole model, it is associated with an impact of the secondary black hole on the accretion disk of the primary. Our multifrequency observing campaign was set up to search for such a signature of the impact based on a prediction made 8 yr earlier. The firstI-band results of the flare have already been reported by Kishore et al. (2024). Here we combine these data with our monitoring in theR-band. There is a big change in theR–Ispectral index by 1.0 ± 0.1 between the normal background and the flare, suggesting a new component of radiation. The polarization variation during the rise of the flare suggests the same. The limits on the source size place it most reasonably in the jet of the secondary BH. We then ask why we have not seen this phenomenon before. We show that OJ 287 was never before observed with sufficient sensitivity on the night when the flare should have happened according to the binary model. We also study the probability that this flare is just an oversized example of intraday variability using the Krakow data set of intense monitoring between 2015 and 2023. We find that the occurrence of a flare of this size and rapidity is unlikely. In machine-readable Tables 1 and 2, we give the full orbit-linked historical light curve of OJ 287 as well as the dense monitoring sample of Krakow. 
    more » « less
  3. Abstract Built in 2004, the Skynet robotic telescope network originally consisted of six 0.4 m telescopes located at the Cerro-Tololo Inter-American Observatory in the Chilean Andes. The network was designed to carry out simultaneous multi-wavelength observations of gamma-ray bursts (GRBs) when they are only tens of seconds old. To date, the network has been expanded to ≈20 telescopes, including a 20 m radio telescope, that span four continents and five countries. The Campaign Manager (CM) is a new observing mode that has been developed for Skynet. Available to all Skynet observers, the CM semi-autonomously and indefinitely scales and schedules exposures on the observer’s behalf while allowing for modification to scaling parameters in real time. The CM is useful for follow up to various transient phenomena including gravitational-wave events, GRB localizations, young supernovae, and eventually, sufficiently bright Argus Optical Array and Large Synoptic Survey Telescope events. 
    more » « less
  4. Abstract We perform a comprehensive search for optical precursor emission at the position of SN 2023ixf using data from the DLT40, ZTF, and ATLAS surveys. By comparing the current data set with precursor outburst hydrodynamical model light curves, we find that the probability of a significant outburst within 5 yr of explosion is low, and the circumstellar material (CSM) ejected during any possible precursor outburst is likely smaller than ∼0.015M. By comparing to a set of toy models, we find that, if there was a precursor outburst, the duration must have been shorter than ∼100 days for a typical brightness ofMr≃ −9 mag or shorter than 200 days forMr≃ −8 mag; brighter, longer outbursts would have been discovered. Precursor activity like that observed in the normal Type II SN 2020tlf (Mr≃ −11.5) can be excluded in SN 2023ixf. If the dense CSM inferred by early flash spectroscopy and other studies is related to one or more precursor outbursts, then our observations indicate that any such outburst would have to be faint and only last for days to months, or it occurred more than 5 yr prior to the explosion. Alternatively, any dense, confined CSM may not be due to eruptive mass loss from a single red supergiant progenitor. Taken together, the results of SN 2023ixf and SN 2020tlf indicate that there may be more than one physical mechanism behind the dense CSM inferred around some normal Type II supernovae. 
    more » « less
  5. Abstract New mass-produced, wide-field, small-aperture telescopes have the potential to revolutionize ground-based astronomy by greatly reducing the cost of collecting area. In this paper, we introduce a new class of large telescope based on these advances: an all-sky, arcsecond-resolution, 1000 telescope array which builds a simultaneously high-cadence and deep survey by observing the entire sky all night. As a concrete example, we describe the Argus Array, a 5 m-class telescope with an all-sky field of view and the ability to reach extremely high cadences using low-noise CMOS detectors. Each 55 GPix Argus exposure covers 20% of the entire sky to m g = 19.6 each minute and m g = 21.9 each hour; a high-speed mode will allow sub-second survey cadences for short times. Deep coadds will reach m g = 23.6 every five nights over 47% of the sky; a larger-aperture array telescope, with an étendue close to the Rubin Observatory, could reach m g = 24.3 in five nights. These arrays can build two-color, million-epoch movies of the sky, enabling sensitive and rapid searches for high-speed transients, fast-radio-burst counterparts, gravitational-wave counterparts, exoplanet microlensing events, occultations by distant solar system bodies, and myriad other phenomena. An array of O(1000) telescopes, however, would be one of the most complex astronomical instruments yet built. Standard arrays with hundreds of tracking mounts entail thousands of moving parts and exposed optics, and maintenance costs would rapidly outpace the mass-produced-hardware cost savings compared to a monolithic large telescope. We discuss how to greatly reduce operations costs by placing all optics in thermally controlled, sealed domes with only a few moving parts. Coupled with careful software scope control and use of existing pipelines, we show that the Argus Array could become the deepest and fastest Northern sky survey, with total costs in the $20M range. 
    more » « less
  6. Abstract We present the optical spectroscopic evolution of SN 2023ixf seen in subnight cadence spectra from 1.18 to 15 days after explosion. We identify high-ionization emission features, signatures of interaction with material surrounding the progenitor star, that fade over the first 7 days, with rapid evolution between spectra observed within the same night. We compare the emission lines present and their relative strength to those of other supernovae with early interaction, finding a close match to SN 2020pni and SN 2017ahn in the first spectrum and SN 2014G at later epochs. To physically interpret our observations, we compare them to CMFGEN models with confined, dense circumstellar material around a red supergiant (RSG) progenitor from the literature. We find that very few models reproduce the blended Niii(λλ4634.0,4640.6)/Ciii(λλ4647.5,4650.0) emission lines observed in the first few spectra and their rapid disappearance thereafter, making this a unique diagnostic. From the best models, we find a mass-loss rate of 10−3–10−2Myr−1, which far exceeds the mass-loss rate for any steady wind, especially for an RSG in the initial mass range of the detected progenitor. These mass-loss rates are, however, similar to rates inferred for other supernovae with early circumstellar interaction. Using the phase when the narrow emission features disappear, we calculate an outer dense radius of circumstellar materialRCSM,out≈ 5 × 1014cm, and a mean circumstellar material density ofρ= 5.6 × 10−14g cm−3. This is consistent with the lower limit on the outer radius of the circumstellar material we calculate from the peak Hαemission flux,RCSM,out≳ 9 × 1013cm. 
    more » « less
  7. Abstract We present photometric and spectroscopic data of SN 2018lab, a low-luminosity Type IIP supernova (LLSN) with aV-band peak luminosity of −15.1 ± 0.1 mag. SN 2018lab was discovered by the Distance Less Than 40 Mpc (DLT40) SN survey only 0.73 days post-explosion, as determined by observations from the Transiting Exoplanet Survey Satellite (TESS). TESS observations of SN 2018lab yield a densely sampled, fast-rising, early-time light curve likely powered by ejecta–circumstellar medium (CSM) interaction. The blueshifted, broadened flash feature in the earliest spectra (<2 days) of SN 2018lab provides further evidence for ejecta–CSM interaction. The early emission features in the spectra of SN 2018lab are well described by models of a red supergiant progenitor with an extended envelope and a close-in CSM. As one of the few LLSNe with observed flash features, SN 2018lab highlights the need for more early spectra to explain the diversity of the flash feature morphology of Type II SNe. 
    more » « less
  8. Abstract We present the densely sampled early light curve of the Type II supernova (SN) 2023ixf, first observed within hours of explosion in the nearby Pinwheel Galaxy (Messier 101; 6.7 Mpc). Comparing these data to recently updated models of shock-cooling emission, we find that the progenitor likely had a radius of 410 ± 10R. Our estimate is model dependent but consistent with a red supergiant. These models provide a good fit to the data starting about 1 day after the explosion, despite the fact that the classification spectrum shows signatures of circumstellar material around SN 2023ixf during that time. Photometry during the first day after the explosion, provided almost entirely by amateur astronomers, does not agree with the shock-cooling models or a simple power-law rise fit to data after 1 day. We consider the possible causes of this discrepancy, including precursor activity from the progenitor star, circumstellar interaction, and emission from the shock before or after it breaks out of the stellar surface. The very low luminosity (−11 mag >M> −14 mag) and short duration of the initial excess lead us to prefer a scenario related to prolonged emission from the SN shock traveling through the progenitor system. 
    more » « less
  9. null (Ed.)